Bit Counting Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

For a non-negative integer x, let $p(x)$ be the number of ones in the binary representation of x. For example, $p(26)=3$ because $26=(11010)_{2}$.
You are given a sequence of n integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Your task is to determine whether there exists a non-negative integer x such that $\left(p(x), p(x+1), \ldots, p(x+n-1)\right.$) is equal to ($a_{1}, a_{2}, \ldots, a_{n}$). Furthermore, if it exists, compute the smallest x satisfying the condition.

Input

The first line of input contains one integer $t(1 \leq t \leq 1000)$ representing the number of test cases. After that, t test cases follow. Each of them is presented as follows.

The first line contains one integer $n(1 \leq n \leq 500000)$. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$ ($0 \leq a_{i} \leq 60$ for all i).
The sum of n across all test cases in one input file does not exceed 500000 .

Output

For each test case, output the smallest non-negative integer x satisfying the condition above. If there is no such x, output - 1 instead.

Example

				standard input	standard output	
4					13	
5					3	
3	3	4	1	2		2305843009213693949
3				-1		
2	1	2				
2						
60	60					
2						
8	0					

Note

Explanation for the sample input/output \#1
For the first test case, $x=13$ satisfies the condition above since $(p(13), p(14), p(15), p(16), p(17))=(3,3,4,1,2)$. It can be shown that there is no non-negative integer smaller than 13 that satisfies the condition above.

This page is intentionally left blank.

